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Lagrangian and Hamiltonian formaIism on a quantum plane 
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Department of Physics, University o€ Alabama, Toscaloosa. AL 35487, USA 

Received 10 February 1993, in final form 11 May 1993 

Abstract. We examine the problem of defining Lagrangian and Hamiltonian mechanics for a 
particle moving on a quantum plane Qq,,. For Lagrangian mechanics, we first define a tangent 
quantum plane reg,, spanned by non-commuting particle coordinates and velocities. Using 
techniques similar to those of Wess and Zumino, we construct two different differential calculi 
on TQ,,,. These two differential calculi can, in principle, give rise to two different particle 
dynamics, stardng from a single bgrangian. For Hamiltonian mechanics, we d e h e  a phase 
space T*Qq., spanned by non-commuting particle coordinates and momenta. The commutation 
relations for the momenta can be determined only after knowing their hrnctiod dependence on 
coordinates and velocities. Thus these commutation relations, as well as the differential calculus 
on T’Q,,, depend on the initial choice of Lagrangian. We obtain the deformed Hamilton’s 
equations of motion and the deformed Poisson brackets, and their definitions also depend on 
om initial choice of Lagrangian. We illustrate these ideas for two sample Lagrangians. The first 
system we examine corresponds to that of a non-relativistic particle in a scalar potential. The 
other Lagrangian we consider is first order in time derivatives and it is invariant under the action 
of the quantum group SLq(2). For that system, SLq(Z) is shown to correspond to a canonical 
symmetry transformation. 

1. Introduction 

Recently, quantum groups 111 have attracted much attention in the physics literature partially 
due to their possible utility in describing particles in two spatial dimensions with generalized 
spin and statistics [2,3]. Quantum groups have the property that they act covariantly 
on generalized spaces, known as quantum planes [4], which are parametrized by non- 
commuting coordinates. These coordinates have been viewed as the classical limit of 
‘deformed’ creation and annihilation operators [5]. Such creation and annihilation operators 
have, in turn, been utilized in the construction of quantum group generators [6,7]. 

Now if quantum plane coordinates are the classical limit of deformed creation and 
annihilation operators, how can ‘classical‘ dynamics be introduced on a quantum plane, 
such that upon canonical quantization, one recovers the deformed creation and annihilation 
operators? More generally, we can ask how does one define classical Lagrangian and 
Hamiltonian mechanics on a quantum plane? This is similar to the question of defining 
classical dynamics for particles moving on spaces parametrized by Grassmann variables; a 
question which was answered long ago [8]. 

In this article, we write down the Lagrangian and Hamiltonian formalism for a 
particle moving on the two-dimensional quantum plane [91. is a two-parameter 
deformation of the ‘plane’, the parameters being q and p .  If x and y denote the non- 
commuting coordinates of then one of the parameters enters in theu commutation 
relation: 

x y  = qyx. (1.1) 
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The other parameter p appears in the differential calculus on (The differential calculus 
for the one-parameter quantum plane was written down by Wess and Zumino [lo], and 
generalized for multiparameter quantum planes in [9].) For this, one introduces oneforms 
dx and dy, where d denotes an exterior derivative and, as usual, d2 = 0. Unlike the case with 
commuting coordinates, the exterior product of two one-forms need not be antisymmetric. 
Instead, 

1 
P 

dx A dy = --dy A dx. (1.2) 

The commutation relations (1.1) and (1.2) have the feature that they are unchanged in 
form under the action of a two-parameter deformation CL,&) of the general linear group 
in two dimensions. Under the action of GL4&), 

(;) + (;:) ='IT1 (;) (1.3) 

where [TI denotes a 2 x 2 matrix [TI = , whose matrix elements A,  B ,  C and D 
commute with the coordinates x and y ,  but do not commute amongst themselves. Rather, 
they satisfy 

( A  B ,  

A B  = p B A  

C D  = p D C  

B C = - C B  A D - D A =  4 - -  C B .  

A C  = qCA 

B D  = q D B  
(1.4) 

( 3 4 
P 

To completely define the differential calculus on the quantum plane it is necessary to 
specify the commutation relations between coordinates x and y and their exterior derivatives 
dx and dy in a consistent manner. According to [9], one can choose 

x d x = p q b x  

Y dY = P q  dY Y,  

The relations (1.1), (1.2) and (1.5) are consistent in that (i) the exterior derivative of (1.1) 
agrees with (IS), that is it follows that from (1.5) that d(xy-qyx) = 0 (we assume the usual 
Leibniz rule for the exterior derivative); (ii) the exterior derivative of the equations (1.5) 
agrees with equation (1.2); and (iii) no secondary conditions arise from commuting dx or 
dy through the left-hand side of xy - qyx = 0. (Provided p q  f -1, one further finds that 
( d . ~ ) ~  = (dy)* = 0.) (iv) It can also be checked that like (1.1) and ( U ) ,  the relations (1.5) 
are preserved under the CL,&) transformations (1.3). (The consistency conditions can be 
re-expressed in terms of Yang-Baxter equations [lo].) (v) Finally we note that the standard 
differential calculus on a plane is recovered in the limit q = p = 1. 

(Alternative commutation relations can be found which satisfy (iMv). They are obtained 
by making the replacement x -+ y, y + x ,  q + q-', p + p-' in the relations (1.5). 
while (1.1) and (1.2) remain unchanged. We will not consider the altemative solutions here, 
but expect that they lead to conclusions which are similar to those we obtain starting from 
(1.3.) 
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we need to introduce a velocity vector 
U = (i, y), and define the Commutativity properties of x and y.  We shall do this in section 2. 
x ,  y, i and j coordinatize the ‘tangent quantumplane’ which we shall denote by TQ,,,. The 
Lagrangian will be a function of these variables. In order to write down the Lagrangian 
formalism, we must be able to perform variations on TQ,,,, and consequently define a 
differential calculus on TQ9,P.  Thus not only do we need to determine the commutativity 
properties x ,  y, i and y, we also need to determine the commutativity properties of their 
variations. This will be done in section 3 and in the append%. We shall require, as usual, 
that the time derivative commutes with the variational derivative. (For us, time will be a 
commuting parameter.) In addition, we require that the differential calculus is preserved 
under the GL4.,(2) transformations (1.3). Two distinct solutions are shown to be consistent 
with these requirements. In principle, they can lead to two distinct particle dynamics- 
starting from a single Lagrangian (and differential calculus on defined by (l.l), (1.2) 
and (1.5)). 

The Lagrangian and Hamiltonian formalisms are developed in section 4. For the former, 
we get the usual form for the Euler-Lagrange equations of motion. For the latter, we need 
to define a phase space T’Q,,, spanned by the particle coordinates and momenta. Now 
the commutation relations for the momenta can only be determined after knowing their 
functional dependence on coordinates and velocities. Therefore these commutation relations 
depend on the initial choice of Lagmgian. For the Hamiltonian formalism, we must be 
able to perform variations on T*Q,,,, and thus define a differential calculus on T*Q,,,. 
The commutation relations associated with this differential calculus will also depend on the 
initial choice of Lagrangian. We further find that the form of the ‘deformed’ Hamilton’s 
equations of motion and the ‘deformed Poisson brackets’ will depend on this choice as well. 
The deformed Poisson brackets   coincide with the usual Poisson brackets for commuting 
variables in the limit q = p = 1. Similar deformed Poisson brackets have been postulated 
by several authors 1111, and they are the classical analogue of deformed commutators or 
‘quommutators’ appearjng in quantum theory. To define the deformed Poisson bracket, we 
require that the time derivative of any function on T*Q,,, is the deformed Poisson bracket 
of that function with the Hamiltonian. 

We illustrate the above described formalism by studying two sample Lagrangians. The 
first Lagrangian we examine is quadratic in time derivatives and, in the limit 4 = p = 1, 
describes a non-relativistic particle in a scalar potential. The commutativity properties of 
the coordinates and velocities restrict the possible choices for the potential. The second 
Lagrangian we examine is first order in time derivatives. It therefore has constraints in 
the Hamiltonian formalism, and they can be eliminated using the analogue of the Dirac 
prescription. The Lagrangian is invariant under the action of the quantum group SL, (Z), and 
these transformations are shown to preserve the Duac brackets. They therefore correspond 
to canonical transformations. 

We remark in section 5 that by quantizing the second Lagrangian one may indeed obtain 
deformed creation and annihilation operators. Additional concluding remarks are made in 
section 5. 

Now to specify the motion of a particle on 

~ ~ 

~ 

2. The tangent quantum plane TQ,, 

We wish to describe the dynamics of a particle moving on the quantum plane. For this, 
let us parametrize the particle trajectory by a (commuting) time coordinate t .  Let us also 
introduce a velocity vector U = (i, y) for the particle, the dot denoting a time derivative. 
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x ,  y ,  i and y coordinatize the 'tangent quantum plane' T Q,,,. To fully define 'T Q,,,, we 
must specify the commutation relations for the velocity components with the coordinates x 
and y .  as well as with themselves. For this, we write the one-forms dx and dy on TQ,., in 
terms of the velocity components dr = i dt and dy = y df. Since we are defining t to be a 
commuting parameter, the commutation relations of x and y with velocity components i and 
y must be the same as the commutation relations of x and y with dx and dy, respectively. 
That is 

x i  = p q i x  

x y  = 4yx + (p4  - 1)iy 

y i  = p i y  

YY = PqYY. 

(2.1) 

These relations are preserved under GL4,,(2) transformations. (The commutation relation 
between x and i presented here differs from that appearing in [12]. The latter commutation 
relation involves a non-commuting constant m associated with the particle mass, as well as 
the c-number q .  It is: m i x  = qxmx.) 

It remains to specify the commutation relation between i and y. We can start with the 
general ansatz: i y  = clyx + c 2 i x  + c3yy + c4iy  + csyx + C 6 j i .  From the requirement 
that no secondary conditions result from commuting x and y through equations (2.1), we 
must have CI = c2 = c3 = c4 = cs = 0 and cs = q .  We are thus left with 

xy = 4 j i .  (2.2) 

This relation too is preserved under transformations (1.3). 
The commutation relations for the coordinates (z' = x ,  z2 = y .  z3 = i, z4 = y) of the 

four-dimensional quantum manifold TQ,,, are specified by equations (1.1). (2.1) and (2.2). 
We note that these relations cannot be written in the simple form: zizj  = q'jzJz' ,  i c j .  

By taking the time derivatives of the relations (2.1) and (2.2), one obtains the 
commutativity properties for higher-order derivatives of x and y. For example, the derivative 
of relations (2.1) leads to the commutation relations for components of acceleration with 
the coordinates 

.. . . 

x i  = p q f x  + ( p q  - 1)iZ 

x y  = q y x  + ( p 4  - N q y i  +Xy)  

y x  = p f y  + ( p q  - 1)yi  

Y Y  = P4YY Jr (P4 - w2 
(2.3) 

where we have assumed the Leibniz rule holds for time differentiation. 
Until now we have examined the commutativity properties of coordinates, velocities, etc, 

evaluated at a single time t. The same commutativity properties of coordinates, velocities, 
etc, are assumed to be valid at any other time t'. 

The coordinates evaluated at different times do not, in general, commute. To obtain 
the commutativity properties of two neighbouring points on a particle trajectory associated 
with two different times I = tl and t = t2, one may perform a Taylor expansion: 

x(t2) =x(t1)  +i(t l)(tZ - t,) + $(fI)(t2 - t 1 ) 2 +  ". 
Y ( t d  = Y( td  + Y ( t l ) O Z  - tl) + ;Y(r,)(rZ - t 1 ) 2 + ' "  

(2.4) 
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The commutativity properties of x(t2). x ( t l ) ,  y(f2). y(t1) can then, in principle, be 
determined from conditions (2.1H2.3) and their time derivatives. For p q  # I, these 
conditions put severe restrictions on the allowable trajectories on &. For the example of 
a 'free particle' x = y = 0, equations (2.3) imply that the velocity components are nilpotent 

~ ~ 

i 2  = y2 = i y  = 0. (2.5) 

(Analogous conditions follow for a particle in a potential as we illustrate in section 4.) 
Further, for the three particle the series (2.4) cuts off and here it is easy to check that the 
coordinates evaluated at different times do not commute. For instance 

To obtain non-trivial particle dynamics it may be desirable to impose that pq = 1. In 
that case, we get no such restrictions (2.5) on a free particle. For the sake of generality 
however, we shall not set p q  = 1 in the discussions which follow, except where otherwise 
stated. 

3. Differentid calculus on TQ,,p 

For Lagrangian mechanics we must be able to perform variations on TQ,,,, and thus we 
must define a differential calculus on TQ,,. That is, we need to know the commutation 
relations between coordinates zi of T Qq,p and their exterior (or variational) derivatives, 
which we now denote by 62'. (We define the exterior derivative 8 to be equivalent to d, 
when it acts on Qq,p c TQ4,P.) In what follows we find that it is possible to define two 
different kinds of differential calculus on T Qq,p. 

As is usual in Lagrangian mechanics, we shall assume that the time derivative commutes 
with the variational derivative. A few commutation relations necessarily follow from this. 
They are obtained by comparing the time derivative of (1.5) with the exterior derivative of 
(2.1). This leads to 

xsx = sxx 

y s y  = s y y  

x s i  = p q s i x  + ( p q  - 1 ) 6 x i  

Y a y  = P@YY + (P4  - 1)SYY 
where we assume the Leibniz rule for 6 and p q  # -1. In addition to (3.1). one obtains the 
identities 

ysx + y s i  = p ( 8 i y  + 8 x 9 )  

ysx + p i s y  = p s x y  + s y i  

i s y  +xsy = q(syx  + S y i )  + (qp - I)(SXy + 8 x 9 )  

(3.2) 

By further taking the exterior derivative of (3.1) and (3.2), we get commutation relations 
between one-forms Sz' on T QqSp: 

(3.3) 
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along with the identity 

(3.4) 
1 1 .  
P P 

S X  A S y  + -8y ~-6i = -Sx ASY - -Sy A Sx. 

As in the previous section, we have assumed that -6' = 0 and (6~') '  = 0. 
To completely define the differential calculus on TQ,,,, we shall make ansatze for the 

remaining commutation relations. Our ansatze are such that all terms involve the same 
number of velocities and coordinates of e*,,. 

We start with -6x A S j  = ra j  A S i ,  r being a c-number. Invariance under GL4,,(2) 
transformations (1.3) immediately fixes r to be either r = q or r = - 1 j p .  With the 
former solution, however, we do not get the usual antisymmetric exterior product in the 
limit q = p = 1. We shall therefore not consider this case. We are thus left with 

(3.5) 
P 

Equations (1.2). (3.3) and (3.5) give some of the commutation relations between two 
one-forms Sz' on TQ,,,. For the remaining such relations, we define a 2 x 2 matrix 

[ f ]  = (2; i:), with the elements fii being c-numbers, and 

1 .  8 i  A 8y = ---6y A 82. 

(3.6) 

The four matrix elements of If] can be  determined (i) by demanding that no secondary 
conditions on combinations of Sz' result from commuting Sz' through the relation (1.2); (ii) 
by imposing the identity (3.4); and (iii) by demanding that the relations (3.6) are preserved 
under the GL,,,(Z) transformations (1.3). We now proceed with (it(iii): 

(i) By multiplying S i  on the right of Sx A Sy + (l/p)Sy A Sx = 0, we find 

f i Z f i l  = 0. (3.7) 

(ii) Upon substituting the ansatz (3.6) into the identity (3.4), we get the conditions 

pf i i  + fzi = -1 and pf i z  + fz2 = - p .  (3.8) 

(iii) Invariance under GL,,,(Z) transformations is insured provided 

f i i  + qfiz = -4 p f i i  - q f z  = 0 ~ and (qp  - 1)fii - qfiz f qfii = 0. 
(3.9) 

For general q and p ,  there are two possible solutions to equations (3.7)-(3.9), which we 
shall call cases (a) and (b). The case (a) commutation relations are 

1 .  

4 
-6y A 6 i  = --ax ASy 

while for case (b) we have 

6x A-69 = -469 A 6x 

8y A-6 i  = ( p q  - 1)Sy A6X - p 6 i  A6y. 
(3.11) 
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Finally, eight commutation relations remain to be specified in order to completely fix 
the calculus. They are the commutation relations between coordinates z' of TQq.p and one- 
forms 6z' on TQ,,, not already contained in equations (1.5) and (3.1). A similar procedure 
to that used to obtain relations (3.10) and (3.11) can be employed to write down four of 
these remaining relations. We carry this out in the appendix. Like with (3.10) and (3.11), 
we find two distinct solutions, and they correspond to cases (a) and (b). For case (a) we 
find 

xsy = qsyx + (pq  - l ) ( S i y  + sxy) 

y s i  = psxy + ( p q  - 1 ) S y i  

xsy = qsyx 

ysx = (1 - pq)Syi + psxy 

and for case (b) we find 

xsy  = qsyx + (pq - I) s i y  + -syx + pq + ( P4 
1 
4 

ysx = psxy + -(pq - 1 ) W  

1 . 1  
P P9 

xsy = -8yx + -(pq - 1pxy 

(3.12) 

(3.13) 

1 

4 
ysx = -sxy .  

Both sets of relations (3.12) and (3.13) satisfy the identities (3.2), and are preserved under 
the GL,,,(2) transformations (1.3). By taking the exterior derivative of equations (3.12) 
and (3.13), we recover the relations (3.10) and (3.11), respectively. 

The final four commutation relations are between velocities x and 9 and their exterior 
derivatives 8.i and ay. To obtain them we first note that the commutation relation between 
the two coordinates x and y of Qq,, is the same as that between the two velocities i 
and 4, and the commutation relation between the one-forms 6 x  and 6 y  is the same as that 
between and S y .  Then from (lS), a self-consistent set of commutation relations between 
velocities and their exterior derivatives is 

xsx = pqsxx 

xsy = qsyx + (pq - 1)wy 

ysx = psxy 
(3.14) 

ysy = pqsyy. 

It can also be checked that these relations are consistent with (3.12) and (3.13), in that no 
secondary conditions arise from commuting z' through (3.14). 

We have thus found two consistent differential calculi on T Q,,,: cases (a) and (b). The 
results can be summarized in terms of the 16 x 16 R-matrix appearing in the relation 

$ s Z j  = Rijk,szkzf (3.15) 

where we again denote (zl = x ,  zz = y. z3 = x, z4 = y]. By taking the exterior derivative 
of (3.15), we get 

(3.16) Sz' A 6z' = - - R i j ~ S Z X  A Sz'. 
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R'j, satisfies the Ymg-Baxter equations [IO] 

For the case (b) solution the non-vanishing components of R are 

(3.18) 

(3.19) 

1 

P4 
RI414 = pq + - - 2 
R3'13 = R4'24 = 1. 
The relations (3.15) and (3.16) are unchanged under the following action of GL,,,(2): 
zi + z'l = +j and Szi + Sz'! = { S z j ,  where 

(3.20) 

[TI once again is the 2 x 2 matrix [TI = (i ;) with non-commuting matrix elements. 

A ,  B ,  C and D have the commutativity properties given in equation (1.4). The condition 
of invariance can be stated as follows 

(3.21) Rcdti i j  o b -  ti - RGbtLti. 

4. Lagrangian and Hamiltonian mechanics on Q4.= 

In order to define a Lagrangian formalism for particles moving on Q,,, we need to take 
partial derivatives with respect to the coordinates of the tangent quantum plane TQ,,,. 
Here we shall work exclusively in terms of.rigkt derivatives. If K is a function on the 
quantum plane we de6ne the right derivatives of K by writing variations 6K of K 
according to 6 K ( x ,  y) = SxaK/ax + GyaK/ay. The Lagrangian L should be a function 
on the tangent plane TQ,,,. Right derivatives of L are then defined by 

aL ar. .ar. aL 
6 L ( x , y , i , y ) = 6 x - + + y - + + x - + 6 y - .  ax ay a i  ay (4.1) 
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An action principle can now be formulated on TQq,, ,  and it leads to the standard form 
for the Euler-Lagange equations (where we interpret all derivatives with respect to the 
coordinates of TQ, , ,  as right derivatives). If we define an action S = Jdr L ( x ,  y , i ,  j ) ,  
then we obtain 

ir, - aL/ax  = jry - aL.jaY = o (4.2) 
when we ‘extremize’ the action, that is set SS = 0 with respect to x and y .  n, and xr are 
the canonical momenta associated with x and y respectively, where we assume the usual 
definition 

Z, = aLjax and X, = a L / a j .  (4.3) 
The solutions of the equations of motion (4.2) must be consistent with the commutation 

relations (1.1) and (2.1&(2.3), and as we will see in example 1, this is not always possible. 
In order to pass to the Hamiltonian formalism we need to define a phase space T’Q,,,. 

It should be spanned by the variables x ,  y, n, and E,. We thus need to know the 
commutativity properties of the coordinates and momenta. But the commutativity properties 
of the momenta can only be determined once we know how to write x. and x, in terms of 
x ,  y, i and j from equations (4.3). For this we must know the functional form of L. So 
the commutativity properties of the phase space variables are dynamically determined from 
the initial choice of Lagrangian. 

To write down Hamilton’s equations of motion for the system, we further need the 
differential calculus on T*Qq+ and this too can only be determined after knowing n, and 
n, in term of x ,  y, x and y. To be more explicit, let us define the Hamiltonian according 
to 

H =inz + jzy - L (4.4) 
and note from (4.1) and (4.2) that variations S H  of H can be written 

(4.5) 

In terms of right derivatives of H, we can also express the variations SH according to 
aH an aH aH 6H = S X -  fay-  +Sn,--++sx - 
ax a y  an, any’ (4.6) 

Hamilton’s equations of motion are standardly obtained by equating the risht-hand sides 
of equations (4.5) and (4.6), and by assuming independent variations Sx, 6y, Sn, and 6zy. 
But for this we need to know the commutativity properties of i with S i r ,  and y with 
an,. Thus the form of Hamilton’s equations of motion is dependent on the initial choice 
of Lagrangian. Moreover, the results may be different for the case (a) and the case (b) 
commutation relations. In general, we cannot even conclude from (4.2), (4.5) and (4.6) that 

Also dependent on the choice of L is the form of the ‘deformed Poisson bracket’ [, ) q , p .  

This must be true if one requires that the time evolution of any function F of x ,  y ,  n, and 
n, (and possibly t )  should be determined from the equation 

lix = -aHjax or ;ry = -aH/ay.  

(4.7) 

For us, equation (4.7) defines the deformed Poisson bracket. For arbitrary values of q and 
p ,  this definition will, in general, differ from the usual definition of the Poisson bracket as 
given in terms of partial derivatives with respect to the phase space variables. 

We next illustrate these ideas with two examples of Lagrangian system on T Q q , P .  
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4.1. Example 1 

The first Lagrangian we consider is second order in time derivatives and corresponds to a 
deformation of the non-relativistic particle (with mass equal to one) in a scalar potential 
V = V(x, y). It is 

(We remark here that we are allowed to introduce arbitrary constant coefficients in the 
Lagrangian, such as the particle mass. The coefficients may be either c-numbers or have 
non-trivial commutativity properties. This is unlike the system examined in [12] where the 
commutativity properties of coordinates and momenta along with the equations of motion 
required the mass to be non-commuting.) Using (3.14), variations 6L of L are 

av av ( S i ?  Y i 6 i  + syy + j 8 j )  - 6x- - ay- 
ay 

SL = - 
1 f p q  ax 

av. av 
= 8 i i  + syy -6x- - 6y- (4.9) 

ax a y  
which leads to the usual form for the Euler-Lagrange equations for a non-relativistic particle 
in a scalar potential 

i = -av/ax and j ;  = -av/ay. (4.10) 

For arbitrary values of q and p. the commutation relations (2.3) put strong constraints 
on the allowable solutions to the equations of motion. In section 2, we saw that they led to 
only trivial solutions to the equations for a free particle. Similar conclusions can be drawn 
for non-zero potentials V. Equations (2.3) lead to a condition on V itself: 

av av av av 
ay ay ax ax 

q-x - x- = -y - qy- .  (4.11) 

When q = p = 1, this is satisfied for any function V which commutes with both x and y. 
A V which satisfies (4.11) for arbitrary values of q and p, is the harmonic oscillator 

potential 

(4.12) 

The only other potentials satisfying (4.11) for pq # 1 are those obtained by multiplying x 2  
and yz in (4.12) by c-number coefficients. (More possibilities arise when one introduces 
non-commuting constants in the theory, as in [12].) These systems have no non-trivial 
solutions because the remaining conditions in (2.3) impose additional constraints between 
the velocities and coordinates. For the potential (4.12) we get xz = x2, y2 = yz and 

For the case of qp = 1, non-trivial solutions to the equations of motion (4.10) are 
i y  = xy. 

possible. In that case, all of equations (2.3) can be written as 

av av av av 
ax ax ay ay 
av av av av 

Y a y = a y Y  ax ax 

x- =q-x x- = -x  

4Y- = -Y 
(4.13) 
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and there are no further constraints on the velocities and coordinates. Conditions (4.13) are, 
for instance, satisfied for the potential (4.12). When p q  = 1, the commutation relations of 
the previous sections simplify significantly and cases (a) and (b) coincide. For example 1 
we will see that Hamilton’s equations of motion and the Poisson brackets have the usual 
form when q p  = 1. 

From equation (4.3), the canonical momenta n, and xy are identified with the velocity 
components 

x, = x and xy = y .  (4.14) 

This then defines the commutativity properties OF the phase-space variables, and also defines 
the differential calculus on T*Q,,,, since the commutation relations for rr, and xy (and their 
variations) must be identical to the commutation relations fori and y (and their variations), 
respectively. 

From (4.4), the Hamiltonian for the system is 

Variations SH of H can now be written 

where we have used (3.14) and (4.5). By comparing equation (4.16) with (4.6), we then 
get the following Hamilton’s equations of motion 

(4.17) 

Using H given in equation (4.15) we can verify that Hamilton’s equations of motion (4.17) 
for the system are identical to the Euler-Lagrange equations (4.10). Equations (4.17) reduce 
to the usual form for Hamilton’s equations of motion when q p  = 1. 

If 3 is an arbitrary function of x ,  y, xx, z, and t ,  its time derivative can then be written 
according to 

. .ar . a 3  . ar a 3  a 3  
F = x -  +y- +xx--+Jiy- + - ax  a y  axz axy at 

where we have applied Hamilton’s equations of motion. can be written in the form 
(4.7) if we ,define the deformed Poisson bracket [, ] q , p  of two functions 3 and G of the 
phase-space variables x ,  y, x, and n, as follows 

As a result of this definition, the Poisson brackets of the phase-space variables will not be 
antisymmetric for p q  # 1. The canonical Poisson bracket relations are 
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If we identify these Poisson brackets with elements of a matrix whose inverse corresponds 
to the components of a symplectic two-form oq+ the symplectic two-form then takes the 
form oq,p = (pq + l ) (S l r ,  A &  t S x ,  ASY), where we have used the commutation relations 
(3.3). We see that the usual symplectic structure is recovered for p q  = 1. 

To compute the deformed Poisson brackets (4.19) of functions of the phasespace 
variables (which we can write in terms of a formal power series), we need to take partial 
derivatives of products of functions B and 71 on T*Qq,,. For this purpose it is necessary 
to know the commutativity properties of such functions with the phase-space variables (or 
more precisely, with variations of the phase-space variables). If we denote the phase-space 
variables by i', then we can specify these commutativity properties by 

~ s ~ i  = gijui?. I' (4.21) 

OjF can be computed using (4.14) and the commutation relations of sections 1 and 3. 
Although the usual Leibniz rule is assumed to hold for the exterior derivative 6, it does not 
necessarily apply for derivatives with respect to the phase space variables. Rather, from 
6(B'H) = 6871 + 8671 and equation (4.21), one gets [lo] 

(4.22) 

4.2. Example 2 

The second Lagrangian we consider is first order in time derivatives and its bosonic and 
fermionic analogues have been studied long ago [8]. It is 

x y  - q y i  
1 + P q  

L =  (4.23) 

(A similar Lagrangian was examined in [13] but there a different differential calculus was 
used.) Up to a total time derivative, L is equivalent to x j .  The Lagrangian (4.23) has 
the property that when we resiiict to the case q = p. it is invariant under a subset of 
the GL,,,(2) transformations defined in equations (1.3) and (1.4). This subset is the one 
parameter deformation of the special h e a r  group in two dimensions, standardly denoted by 
SL,(2), and it is obtained by setting 

q = p  and detq[T] = 1 (4.24) 

where 

deb[Tl= A D  - q B C .  

Here one notes that detJf]  so defined~commutes with all matrix elements A, B ,  C and D 
when q = p ,  and therefore can be identified with the c-number 'one'. 

By taking the variational derivative of L we can get two different answers, depending 
upon whether we use case (a) or (b) commutation relations: 

(1 + pq)SL = sxy  + xsy  - q s y i  - qy6.i 

(4.25) 
pqsxy  + qsyx  - s i y  - pqzsy i  = I  ( l / p q ) S x y  + q6yx - 6 i y  - ( l / p )Syx  

case (a) 
case (b). 

In either case, however, we obtain the trivial equations of motion i = y = 0, and as a 
result the Lagrangian vanishes 'on mass shell'. 
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The equations for the canonical momenta correspond to primary constraints (in the sense 
of Dirac), and they have the same form for both case (a) and (b), 

As a result, the commutativity properties of n, and H, (and their variations) are identical 
to the commutativity properties of -y/(l + pq) and qx/(l  + pq) (and their variations), 
respectively. 

It is easy to check that the Hamiltonian for this system is zero, or more precisely, it is 
a linear combination of the constraints (4.26). Now variations 6 H  of H are different for 
cases (a) and (b). From equation (4.5), 

(4.27) 

where s can take two values: s = p and s = l /q.  The former corresponds to case (a) and 
the latter corresponds to case (b). As a result of (4.27), Hamilton’s equations of motion 
wiIl be different for the two cases: 

(4.28) 

If 3 is an arbitrary function of x ,  y ,  zx, zy and t ,  then its time derivative $ can be 
written in the form (4.7) if we define the deformed Poisson bracket [, ] 4 , P  of two functions 
F and G on the phase space as follows 

Then the Poisson brackets of the phase-space variables will be 

[Y?  ~ Y 1 9 , P  = P I S Z  
2 2  Ix, JG19,p = P I S  9 

b?x,xlq,p = [ n y . Y l q . p  = -1.  
(4.30) 

Applying these Poisson brackets, we see that the constraints are not first class (neither for 
case (a) nor for case (b)), since 

[ 4 X >  4 y l q . p  = 11s (4Y> 4xlq.p = -l/sq. (4.31) 

(Here we assume pq + -1.) 

and replace deformed Poisson brackets {, Iq.,, by deformed Dirac brackets [, 
the latter by 

( K  (4.32) 

where 3 and~G are arbitrary functions on T*Q,,,.  With this definition, it follows that Dirac 
brackets of the constraints q5x and I P ~  with any functions on the phase space vanish. We can 
now eliminate the constraints from the theory by working on a reduced phase space. We 
can take the reduced phase space to be the original quantum plane Qq,p  parametrized by x 

To eliminate the constraints & and by, we can apply the analogue of the Dirac procedure 
We define 

= Gr, G}q.p+ s (q(3 ,  4xlq,p(4y, Gl9.P - (3, 4YI9,P(4Xx. G1q.p) 



5128 M Lukin et a1 

and y. If F and G are functions on the reduced phase space, their Dirac brackets simplify 
to 

IF, = s(qIF, i r x l q . p t n y .  G lq ,p  - IF, ~ y l q , p ( ~ x x ,  Glq,p) 

I a F a G  aFaG 
(4.33) 

We then see that the Dirac brackets between the coordinates x and y do not vanish, and 
further, are not antisymmetric. Instead, 

~~ (4.34) P {Y, = -. P 
sq S 

b-. Y& = -- 

The Dirac bracket relations (4.34) are preserved under SLq(2) transformations (cf 
equations (1.3) and (4.24)). Such transformations are therefore canonical. 

Instead of being antisymmetric, the brackets (4.34) have the property 

tx> YI;+ = -(1/q){Ys XI;.,. (4.35) 

Equation (4.35) holds for both case (a) and case (b). From (4.34) the symplectic two-form 
U,,,, for the theory is proportional to the two-form on Qq,p: 

S 
O q , p  = -(Pq 4- 1)6X A 8Y. 

P 

5. Concluding remarks 

In section 3 and the appendix we were able to construct two different differential calculi on 
TQ,,,. The significance of having two different calculi is not evident, and there seems to be 
no reason for prefemng one over the other. From them, it appears that starting from a single 
Lagrangian one may, in principle, derive two distinct dynamical systems. Furthermore, it 
may be possible to construct more differential calculi, and hence more dynamical systems, 
if we start with more general ansatze then the ones we used. 

Although we developed the Lagrangian and Hamiltonian formalisms for particles 
moving on Qq,P, we were unable to find non-trivial dynamical systems for arbitrary values 
of p and q which were consistent with the commutation relations (2.3). Furthermore, the 
Lagrangians we examined in section~4 were not central elements of the algebra generated 
by n, y, x and y. They thus cannot be identified with c-numbers. (However on mass shell, 
the Lagrangian (4.22) was a c-number, namely zero.) The interpretation of Feynman path 
integrals using such Lagrangians thus becomes problematic. 

Nevertheless, a consistent canonical quantization of these systems may be possible, 
even though the Lagrangians are not c-numbers. The quantization procedure, however, is 
not uniquely determined. For example 2 we want to replace x and y, by some new non- 
commuting operators x and y. where the latter satisfy (1.1) in the limit R + 0. In the 
limit of q = p = 1, we should recover the usual quantization. For example 2 a possible 
quantization could mean replacing Dirac brackets (4.34) by the relation 

1 SP -xy - yx = 
9 sq 
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x and y are then deformed creation and annihilation operators. Thus for rhis particular 
example x and y are indeed the clasical limit of deformed creation and annihilation 
operators. But this result is not general as it was obtained specifically from Lagrangian 
(4.23). (For algebras with more than two elements (excluding the central element), the 
introduction of central terms as in equation (5.1) may cause a break down of associativity. 
In order to preserve associativity, certain criteria have to be satisfied. For a discussion, see 
U41.) 

Finally, we remark that although the Lagrangian (4.23) is invariant under SL,(2) 
transformations when q = p .  and these transformations correspond to a canonical symmetry, 
we do not know how to apply Noether's theorem in this case to find the analogue of the 
symmetry generators (except for the case of q = p = 1, where the SL(2) generators are 
1 and i times binomials of x and y). The reason is that to apply Noether's theorem, we 
must be able to write the symmetry transformation (1.3) in infinitesimal form, and this is a 
non-trivial problem when q = p # 1. Yet SL,(2) (actually, SUq(2)) generators have been 
constructed from binomials of deformed creation and annihilation operators [7].  

Acknowledgment 

AS and IY have been supported during the course of this work by the US Department of 
Energy under conbact no DEFG-05-84ER-40141. 

Appendix 

Here we derive the commutation relations of x with Sj, y with SX, i with Sy and 9 with 
Sn. For this, we define a 4 x 4 matrix [ F ] ,  whose elements are c-numbers, and make the 
ansae 

The matrix elements can be determined (i) by demanding that no secondary conditions on 
combinations of zi and Sz' result from commuting z' and Sz' through the commutation 
relations (U), (2.1) and (2.2); (ii) from the identities (3.2); and (iii) by demanding that the 
relations (A.l) are preserved under the GL,,,(2) transformations (1.3). 

(i) By multiplying Si and S y  on the right of xy - qyx = 0, we find 

FII  = q and Fzi = O  (-4.2) 

along with the consistency conditions 

F I A P  - F z )  = 0 

By multiplying 6 x  and 6y on the right of the commutation relations (2.1), we find that 

F31 = O  and F41 = O  (A.4) 
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along with the consistency conditions 

(ii) Upon substituting the ansatz (A.1) into the identities (3.2), we get the following 
additional conditions 

Fz3 + F43 = 0 

Fw + F a  = p ,  

For arbitrary q and p .  there are two solutions to equations 01.3). (AS) and (A.6). One 
of them yields the following matrix [ F ]  

However, it is not hard to show that the commutation relations resulting from (A.7) do not 
fulfil (iii), that is they are not preserved under GL4.P(2) transformations (1.3), and we shall 
thus not consider this solution further. 

On the other hand, GLq,,(2) transformations do preserve the other solution 

\ o  0 1 - q s  

To determine the quantity s, we can (i) multiply Sx on the right of k y  - qyk = 0. This 
yields 

(1 - qs) (s /p  - 1 )  = 0. (A.% 

s is thus allowed to rake two different values, s = p and s = l / q ,  and they correspond to 
the two cases (a) and (b), respectively. The commutation relations given in equations (3.12) 
and (3.13) result. 
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